priori vorausgesetzt, so würde die von Nowotny et al. (1968) seinerzeit vorgeschlagene Strukturformel recht naheliegend erscheinen. Die Schwingungsspektren der $\mathrm{OH} / \mathrm{OD}-\mathrm{Gruppen}$ des $\mathrm{Ge}(2)$-Tetraeders fallen wahrscheinlich mit den breiten Banden der Wassermoleküle zusammen. Die Banden der Deformationsschwingungen der Wassermoleküle sind zu schwach und zu breit, um eine Aussage über die Anzahl der verschiedenartigen Wassermoleküle zu gestatten. Die Deformationsschwingungen der OH/OD-Gruppen wurden nicht beobachtet.

Wir danken den Herren K. Hirota, MSc, Dr N. Kimizuka und Dr S. Ueno für wertvolle Diskussionen.

Literatur

Buerger, M. J. (1959). Vector Space and its Application in Crystal Structure Investigation, S. 239-247. New York: John Wiley.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Dornberger-Schiff, K. (1964). Abh. Dtsch. Akad. Wiss. Berlin, Kl. Chem. Geol. Biol. Nr. 3.
Eulenberger, G., Wittmann, A. \& Nowotny, H. (1962). Monatsh. Chem. 93, 1046-1054.
Jeżowska-Trzebiatowska, B., Hanuza, J. \& Wojciechowski, W. (1967). Spectrochim. Acta Part A, 23, 2631-2636.
Malinovskii, Yu. A., Pobedimskaya, E. A. \& Belov, N. V. (1976). Dokl. Akad. Nauk SSSR, 227, 1350-1353; Sov. Phys. Dokl. 21, 178-180.
Nowotny, H., Marksteiner, A. \& Neckel, A. (1968). Omagiu Acad. Prof. Raluca Ripan, herausgegeben von C. Dragulescu, S. 403-412. Bucharest: Edituria Academiei Republicii Socialiste Romania. Chem. Abstr. 68, 109623k.
Nowotny, H. \& Szekely, G. (1952). Monatsh. Chem. 83, 568-582.
Ponomarev, V. I., Filipenko, O. S., Pobedimskaya, E. A. \& Belov, N. V. (1974). Dokl. Akad. Nauk SSSR, 215, 584-587; Sov. Phys. Dokl. 19, 115-117.
Robbins, C., Perloff, A. \& Block, S. (1966). J. Res. Natl Bur. Stand. Sect. A, 70, 385-391.
Strunz, H. \& Giglio, M. (1961). Acta Cryst. 14, 205-208.

The $\mathbf{T h}_{\mathbf{2}} \mathbf{Z n}_{17}$ Structure: Accounting for the Constant Axial Ratio of the Hexagonal Cell

By W. B. Pearson
Departments of Physics and Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 3 January 1979; accepted 8 March 1979)

Abstract

The dimensional behaviour of phases with the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ ($M_{2} N_{17}$) structure is analysed in order to account for the extreme constancy of the rhombohedral angle, or axial ratio of the equivalent hexagonal cell ($c / a=1.46$ ± 0.01). Both cell edges a and c vary linearly with D_{M} ($D=$ diameter) at constant D_{N} and with D_{N} at constant D_{M}, and the variation of both a and c with D_{M} is identical. These conditions uniquely identify the slightly rumpled hexagon-diamond-triangle nets of M and $N(3)$ atoms about (0001) planes at $z=0, \frac{1}{3}$ and $\frac{2}{3}$ as controlling the a parameter and the $$
\begin{gathered} -N(1)-M-N(4)-M-N(1)- \\ \text { (cage) }^{\prime} \end{gathered}
$$ lines of atoms along [0001] as controlling the c parameter, the $M-N(4)-M$ cage length depending only on D_{N}. Not only do the equations derived for the

 0567-7408/79/061329-05\$01.00variation of a and of c with D_{M} and D_{N} allow the accurate calculation of the unit-cell dimensions, but they are shown to lead to the constant axial ratios that are found for the phases.

Introduction

One of the most fascinating metallic-alloy structures is the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ type (rhombohedral) because of the extreme constancy of the axial ratio of the equivalent hexagonal cell which varies by no more than ± 0.008 from 1.460 for 43 phases as pointed out by Johnson, Smith \& Wood (1969) in their investigation of phases with this structure. Such invariance in the structure of a metallic alloy is indeed surprising, although it may be observed in nonmetallic alloys when it results from the rigidity of the hybrid $s p^{3}$ bond angle. For example the axial ratio of phases with the Na_{3} As structure (hexagonal) only varies by ± 0.03 from a value of 1.79 (with
© 1979 International Union of Crystallography
one possible exception) because of the pivotally resonating $s p^{3}$ bonds from As to its $(6+2) \mathrm{Na}$ neighbours (Pearson, 1972). Also the axial ratio in some 20 phases with the wurtzite structure (hexagonal) only varies between 1.595 and 1.658 about the ideal value of 1.633 , in marked contrast to that of phases with the NiAs structure where it varies from about 1.2 to $2 \cdot 0$!

Although the axial ratio appears to be an invariant parameter of the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure, it cannot be causally so, since it must result from the relative constancy of interatomic distances in the directions of the unit-cell axes or of interatomic distances lying in directions at an angle to the unit-cell axes. It is the object of this paper to analyse the relationships between the atoms in the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure and discover the reason for the constancy of the axial ratio, this being part of a programme to understand the ordering, stability and dimensional relationships in the crystal structures of alloys.

The $\mathbf{T h}_{\mathbf{2}} \mathbf{Z n}_{17}$ structure

There are 38 atoms in the hexagonal cell of the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ ($M_{2} N_{17}$) structure. The M atoms occupy one site-set and the N atoms four site-sets. The coordination number (CN) of the N atoms is 12 to 14 and that of the M atoms is 20 , although seven of the neighbours are at distances corresponding to fairly weak connections. CN 12 radii of Teatum, Gschneidner \& Waber (1960) have therefore been used in the analyses of this paper. However, their values of $3 \cdot 12$ and $3 \cdot 16 \AA$ respectively for the diameters of U^{VI} and Pu^{V} clearly are inappropriate for the $\mathrm{U}_{2} \mathrm{Zn}_{17}$ and $\mathrm{Pu}_{2} \mathrm{Zn}_{17}$ phases. Values 3.55 and $3.48 \AA$ respectively, close to those suggested by Zachariasen (1973) for U^{IV} and $\mathrm{Pu}^{\mathrm{IV}}$, lead to sensible agreement between the behaviour of these phases and others with the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure. The constancy of the axial ratio is even more surprising when it is seen that phases with the structure have M atoms with diameters (D_{M}) between approximately 2.9 and $4.5 \AA, N$ atoms with diameters $\left(D_{N}\right)$ between 2.25 and $3.20 \AA$ and diameter ratios D_{M} / D_{N} lying between 1.24 and 1.46 .

Accurate atomic parameters have been determined for six phases with the structure type, five reviewed by Johnson et al. (1969) and $\mathrm{Ba}_{2} \mathrm{Mg}_{17}$ determined by Kanda \& Carter (1973). Typical interatomic distances are given for $\mathrm{Pr}_{2} \mathrm{Fe}_{17}$ by Johnson, Wood, Smith \& Ray (1968). A number of these are closer than the appropriate radii sums and as an a priori assumption, it might be expected that arrays of atoms connected closely together would be responsible for controlling the unit-cell dimensions. Prominent among such arrays in the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure are: (i) the slightly rumpled hexagon-diamond-triangle array of M and $N(3)$ atoms about (0001) planes at $z=0, \frac{1}{3}, \frac{2}{3}$. (ii) The slightly

Fig. 1. $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure: arrays of atoms corresponding to the description in the text. (i) Is the top left, (ii) top right, (iii) bottom left and (iv) bottom right.
rumpled Kagomé nets of $N(2)$ and $N(4)$ atoms about (0001) planes at $z=\frac{1}{6}, \frac{1}{2}$ and $\frac{5}{6}$. (iii) The off-set chains of triangles of $N(2)$ and $N(3)$ atoms lying approximately in planes whose trace is in the [0001] direction. These triangles also connect to the hexagons of $N(3)$ atoms at $z=0, \frac{1}{3}$ and $\frac{2}{3}$, giving what might be described as a three-dimensional 'sheared' Kagome net. (iv) There are also lines of $M-N(1)-N(1)-M$ atoms lying along [0001] directions with the M atoms at the end of the lines being connected through a cage of six $N(4)$ atoms. These are shown in Fig. 1.

If, for example, the (0001) $N(2)$ and $N(4)$ Kagomé net and the [0001] $N(2)$ and $N(3)$ chains control the unit-cell dimensions, then

$$
a \simeq 2 \sqrt{3} \cdot D_{N}, \quad c \simeq 3 \sqrt{3} \cdot D_{N} \quad \text { and } \quad c / a \simeq 1 \cdot 50
$$

but I made little progress with such relationships. Furthermore, the diameter ratio D_{M} / D_{N}, usually a good parameter to pursue, appeared particularly unprofitable! Instead, analysis of the dependence of the a and c parameters of the unit cell on the diameters of the component atoms shows uniquely which interatomic contacts control the unit-cell dimensions.

Determination of the interatomic contacts controlling the unit-cell dimensions

Figs. 2 and 3 show that both a and c vary linearly with D_{N} at constant D_{M}, and with D_{M} at constant D_{N}. From
these figures the following equations for the variation of a and c are derived:

$$
\begin{aligned}
a+\left(3.203-D_{N}\right) 2.286 & =10.0-\left(3.575-D_{M}\right) \\
& \times 0.727 \\
c+\left(3.227-D_{N}\right) 3.846 & =15.0-\left(3.575-D_{M}\right) \\
& \times 0.727
\end{aligned}
$$

whence

$$
\begin{align*}
& a=2.286 D_{N}+0.727 D_{M}+0.079, \tag{1}\\
& c=3.846 D_{N}+0.727 D_{M}-0.010, \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
c-a=1.560 D_{N}-0.089 \tag{3}
\end{equation*}
$$

The surprising feature of these equations is that both cell axes vary identically with the diameter of the M atom. This limits control by M atoms to the $\langle 10 \overline{1} 0\rangle$ and [0001] directions (i.e. along the cell axes) and excludes such chains of atoms as $M-N(4)-M-N(4)-$ $M-N(4)$ which runs in the [1101] direction parallel to the long body diagonal of the hexagonal cell.

In the (0001) plane the only possibility of satisfying equation (1) is with the net shown in Fig. 1(i), so that $a \simeq D_{M}+2 D_{N}$. (In fact, the 40 binary phases essentially realize this relationship with $D_{M}+2 D_{N}=1.04 a-$ $0 \cdot 18$.) Thus a depends on a single value of D_{M} and so c

Fig. 2. Plots showing (i) unit-cell edge a versus D_{M} for $M_{2} N_{17}$ phases with $N=\operatorname{Be}(\circ), \mathrm{Co}(\nabla), \mathrm{Fe}(\mathbf{\Lambda}), \mathrm{Zn}(\times)$ and $\mathrm{Mg}(\square)$, (ii) a at $D_{M}=3.6 \AA$ versus D_{N} for the five N components, Be, Co, Fe, Zn and Mg , and (iii) $a+\left(3.20-D_{N}\right) 2.286$ versus D_{M} for all 40 binary phases with the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure.
must also depend on a single value of D_{M}. The $M-N(1)-N(1)-M$ lines of atoms along [0001] with length $D_{M}+2 D_{N}$ provide the only possibility of realizing this. However the M atoms at the end of these chains are linked by a cage of six $N(4)$ atoms (Fig. 1), so that

$$
c \simeq D_{M}+2 D_{N}+(M-M \text { distance })
$$

and since $a \simeq D_{M}+2 D_{N}$,

$$
c-a \simeq(M-M \text { distance }),
$$

whereas equation (3) above gives $c-a=1.560 D_{N}-$ 0.089 .

Therefore the length of the $M-N(4)-M$ cage along [0001], although involving the diameter of the M atom, must be largely independent of it and depends only on D_{N}. This requirement appears to be satisfied; the $M-M$ distance varies linearly with D_{N} and somewhat randomly with D_{M} for the six phases whose atomic parameters have been determined accurately. The observed

Fig. 3. Plots showing (i) unit-cell edge c versus D_{M} for $M_{2} N_{17}$ phases with $N=\mathrm{Be}(\circ), \mathrm{Co}(\nabla), \mathrm{Fe}(\mathbf{\Delta}), \mathrm{Zn}(\times)$ and $\mathrm{Mg}(\square)$, (ii) c at $D_{M}=3.6 \AA$ versus D_{N} for the five N components, $\mathrm{Be}, \mathrm{Co}, \mathrm{Fe}$, Zn and Mg , and (iii) $c+\left(3.23-D_{N}\right) 3.846$ versus D_{M} for all 40 binary phases with the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$, structure.
$M-M$ distance also varies linearly with the observed ($c-a$) values. The dependence of the observed $M-M$ distance on D_{N} can be represented by the equation: $(M-M$ distance $)=1.58 D_{N}-0.103$, not significantly different from equation (3) obtained from the cell edges of 40 binary phases with the structure. In the $M-N(4)-M$ cages each M atom is joined to three $N(4)$ atoms at a distance equal to the radii sum $\left(R_{M}+R_{N}\right)$ and to the other three at a somewhat longer distance. The $N(4)-N(4)$ distances are closer than the CN 12 diameter of the N atoms. Since the $N(4)$ atoms have freedom in the (0001) plane (x parameter) and in the [0001] direction (z parameter), and the M atoms have freedom along [0001] (z parameter), it is not inconceivable that the cage length ($M-M$ distance) could be largely independent of the M atom diameter (see Appendix).

Hence the atomic arrays controlling the unit-cell dimensions are uniquely identified. They are the (0001) rumpled M and $N(3)$ hexagon-diamond-triangle nets which control a and the [0001] lines of atoms

$$
\begin{gathered}
N(1)-N(1)-M-N(4)-M-N(1)-N(1) \\
\text { cage }
\end{gathered}
$$

which control c, the $M-N(4)-M$ cage length being controlled by the diameter of the N atoms.

Constancy of the axial ratio

Equations (1) and (2) clearly do not give a mathematically constant c / a ratio, yet this is achieved even though D_{M} increases by 53% and D_{N} by 42% on going from $\mathrm{Ti}_{2} \mathrm{Be}_{17}$ to $\mathrm{Ba}_{2} \mathrm{Mg}_{17}$. Fig. 4 shows contours for $c / a=1.45,1.46$ and 1.47 as a function of D_{M} and D_{N},

Fig. 4. Contours for axial ratios $c / a=1.45,1.46$ and 1.47 as a function of D_{M} and D_{N} (full lines) and constant diameter ratios $D_{M} / D_{N}=1.24$ and 1.46 (broken lines). Also shown are phases having the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure (\circ).
together with lines for $D_{M} / D_{N}=1.24$ and 1.46 , the limits of the diameter ratio for phases presently known to have the structure. It also shows the positions of phases currently known to take the structure. The average observed axial ratio of phases formed by Zn is indeed larger than that of phases formed by Fe and by Co as the diagram would indicate. Clearly there is a strong correlation of the constant axial ratio and the diameter ratio and the former varies very slowly with changing diameter ratio.

Discussion

The radius ratio, R_{M} / R_{N}, is generally taken as the basis of attempts to analyse geometrical relationships in the structures of metallic phases. But this introduces unsolved difficulties regarding atomic coordination and the appropriate atomic radius to use. This is especially so when one component has several different coordination numbers in the structure, or when the distances from the central atom to its neighbours forming the convex coordination polyhedron are very disparate. The method of analysing the unit-cell dimensions of phases with the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure in terms of the CN 12 diameters of the component atoms (D_{M} and D_{N}) used in this paper avoids all of these difficulties, since change of coordination from CN 12 only subtracts or adds a constant value to the diameters. Therefore the equations derived are independent of the coordination of the atoms concerned, except for a constant term. Furthermore, the form of the equations, expressed directly in terms of D_{M} and D_{N}, rather than ratios, is very suitable for making deductions regarding the atomic arrays which control the structural dimensions.

In the present paper, not only are the features controlling the unit-cell dimensions and therefore the very constant value of the axial ratio uniquely identified, but it is clear from equations (1) and (2), that the unit-cell dimensions of any new phase that might take the $\mathrm{Th}_{2} \mathrm{Zn}_{17}$ structure can be calculated very precisely from knowledge of D_{M} and D_{N}. Thus the calculated a and c values are respectively within an average of 10.030 and $10.027 \mid \AA$ of the observed values for 19 phases with $N=\mathrm{Be}, \mathrm{Mg}, \mathrm{Fe}$ and Co (excluding the $M=\mathrm{Y}$ and Ce phases whose exact valences and therefore diameters are unknown), so they are correct to within a fraction of a per cent. Both the calculated a and c values of the Zn compounds are somewhat too high, indicating that the assumed Zn diameter of $2.788 \AA$ is too large. A diameter of 2.760 \AA gives average agreement of 10.012 for a and $10.022 \mid \AA$ for c for $12 M_{2} \mathrm{Zn}_{17}$ phases (those whose M atom valencies and diameters are known with certainty).

It is interesting to note that the $N(2)$ atoms which have no variable parameters are not involved in the
atomic arrays that control the unit-cell dimensions, and secondly that the variable parameters of the other atoms all operate in the direction of their neighbours which are part of an atomic array controlling the unitcell dimensions, as summarized below:
$M: z: M-N(1)$ distance along [0001]
$N(1): z: N(1)-N(1)$ and $M-N(1)$ distances along [0001]
$N(3): \quad x: \quad N(3)-N(3)$ and $M-N(3)$ distances approximately along [1010], [01 10$]$
$N(4): x, z: N(4)-N(4)$ and $M-N(4)$ distances in $M-N(4)-M$ cage.

Clearly it is this feature which permits the structure to maintain a constant axial ratio despite the considerable variation of the sizes of the atoms in different phases, since major relative adjustments of the atom positions can occur without influencing the cell dimensions in the way that would be required if the atomic parameters concerned had fixed values.

This work was supported by a grant from the National Sciences and Engineering Research Council, Canada.

I am grateful to Miss Carolyn Bako and Mr S. Hull for assistance with calculations.

APPENDIX

An essential argument of the paper is that the [0001] $M-M$ distance should be independent of D_{M} for phases
with the same N atom. Unfortunately only two of the six phases whose atomic parameters are accurately determined have the same N component, but the $M-M$ distance is identical to within $0.02 \AA$ for them. Nevertheless, the relationship $(M-M$ distance $)=1.58 D_{N}-$ $0 \cdot 103$ can be used to correct for the different sizes of the N atoms. The table below shows that the $M-M$ distances so adjusted for a constant D_{N} value of $2.8 \AA$ are indeed very constant over a variation of D_{M} from 2.9 to 4.5 A .

Phase	$M-M$ distance (\AA)	$D_{M}(\AA)$
$\mathrm{Nb}_{2} \mathrm{Be}_{17}$	4.327	2.936
$\mathrm{U}_{2} \mathrm{Zn}_{17}$	4.309	3.55
$\mathrm{Th}_{27} \mathrm{Fe}_{17}$	4.318	3.596
$\mathrm{Th}_{2} \mathrm{Co}_{17}$	4.313	3.596
$\mathrm{Pr}_{2} \mathrm{Fe}_{17}$	4.297	3.656
$\mathrm{Ba}_{2} \mathrm{Mg}_{17}$	4.387	4.486.
	References	

Johnson, Q., Smith, G. S. \& Wood, D. H. (1969). Acta Cryst. B25, 464-469.
Johnson, Q., Wood, D. H., Smith, G. S. \& Ray, A. E. (1968). Acta Cryst. B24, 274-276.

Kanda, F. A. \& Carter, W. S. (1973). J. Less-Common Met. 32, 97-102.
Pearson, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys, p. 396. New York: Wiley-Interscience.
Teatum, E., Gschneidner, K. \& Waber, J. (1960). La2345, US Department of Commerce, Washington, DC.
Zachariasen, W. H. (1973). J. Inorg. Nucl. Chem. 35, 3487-3497.

Acta Cryst. (1979). B35, 1333-1336

La Structure Cristalline du Fluorotitanate de Potassium $\mathrm{KTiF}_{\mathbf{4}}$

Par R. Sabatier, G. Charroin, D. Avignant et J. C. Cousseins
Laboratoire de Chimie des Solides, Université de Clermont-Ferrand II, BP 45631750 Aubière, France
et R. Chevalier
Laboratoire de Crystallographie et Physico-Chimie des Matérieux, Université de Clermont-Ferrand II, BP 4563170 Aubière, France

(Reçu le 8 juin 1978, acceptéle 5 mars 1979)

Abstract

The crystal structure of $\mathrm{KTiF}_{4}, M_{r}=162 \cdot 99$, has been determined from X-ray diffraction data measured on an automatic diffractometer. The compound crystallizes in

 0567-7408/79/061333-04\$01.00the orthorhombic system, space group Pcmn (Pnma) with eight molecules per unit cell. The lattice constants are $a=7.944$ (10), $b=7.750$ (10), $c=12.195$ (8) \AA, $D_{m}=2.85(5), D_{c}=2.88 \mathrm{Mg} \mathrm{m}^{-3}, Z=8$. Leastsquares refinement of coordinates and anisotropic © 1979 International Union of Crystallography

